Chapter 13: Problems

NOTE: Math will not display properly in Safari - please use another browser

13.1 Problems

  1. (Boas Chapter 10, Section 11, Problems 5, 7, 8.) Consider thecoordinates (u,v,z) defined by x=u(1v), y=u2vv2,z=z.

    a) Find the basis vectors \boldsymbol{\hat{u}} and \boldsymbol{\hat{v}}, the scale factors h_u and h_v, and the infinitesimal displacement vector d\boldsymbol{r}.

    b) Write expressions for \boldsymbol{\nabla} f, >\boldsymbol{\nabla} \cdot \boldsymbol{A}, and \nabla^2 f.

    c) Calculate \boldsymbol{\nabla} \cdot \boldsymbol{\hat{u}}, \boldsymbol{\nabla} \times \boldsymbol{\hat{v}}, and \nabla^2 \ln u.

  2. (Boas Chapter 11, Section 13, Problem 23.) Express \Gamma(55.5) in terms of powers of 2, a factor of \sqrt{\pi}, and the double factorial of a number.

  3. Show that the Gamma function can be expressed as \Gamma(x) = 2 \int_0^{\infty} t^{2x-1} e^{-t^2}\, dt.

  4. (Boas Chapter 12, Section 23, Problem 1.) Use the generating function to prove that the Legendre polynomials are normalized by \int_{-1}^1 [P_\ell(x)]^2\, dx = 2/(2\ell+1). You may proceed as follows. First, square the relation \Phi(x,h) = \sum_\ell P_\ell(x) h^\ell and integrate both sides from x=-1 to x=1. Second, invoke the series expansion \ln(1+h) = h - h^2/2 + h^3/3 - h^4/4 + h^5/5 + \cdots to match the powers of h on each side of the equation.

  5. Prove the identity

    \frac{1 - h^2}{(1 - 2x h + h^2)^{3/2}} = \sum_{\ell=0}^\infty (2\ell + 1) P_\ell(x)\, h^\ell.

  6. Express \delta(x) as an expansion in Legendre polynomials in the interval -1 \leq x \leq 1.

  7. Express x^6 as an expansion in Legendre polynomials.

  8. Prove that \int_{-1}^1 (1-x^2)^{-1} P_\ell^m(x) P_\ell^{m'}(x)\, dx = 0 when m \neq m'.

  9. Express \delta(\theta-\theta') \delta(\phi-\phi')/\sin\theta as an expansion in spherical harmonics.

  10. (Boas Chapter 12, Section 23, Problem 10.) Evaluate \int_0^\infty x^{-p} J_{p+1}(x)\, dx.

  11. (Boas Chapter 12, Section 23, Problem 14.) Evaluate \int x^3 J_0(x)\, dx.

  12. Prove that J_0(x) = (2/\pi) \int_0^1 (1-t^2)^{-1/2} \cos(xt)\, dt.

  13. Prove that if f(x) goes to zero at x = x_j ($j = 1, 2, 3,

    \cdots$), then

    \delta\bigl( f(x) \bigr) = \sum_j | f'(x_j) |^{-1} \delta(x-x_j),

    where a prime indicates differentiation with respect to x.

  14. (Boas Chapter 7, Section 13, Problem 6.) A periodic function f(x) is defined to be equal to e^{ikx} in the interval -\pi \leq x \leq \pi and to repeat such that f(x+2\pi) = f(x); k is not equal to an integer. Express this function as a Fourier series.

  15. A periodic function f(x) is defined to be equal to 0 in the interval -\pi \leq x \leq 0, to \sin x in the interval 0 < x \leq \pi, and to repeat such that f(x+2\pi) = f(x). Express this function as a Fourier series.

  16. (Boas Chapter 7, Section 13, Problem 15.) A function f(t) is defined to be equal to 1 in the interval -2 \leq t \leq 0, to -1 in the interval 0 < t \leq 2, and to 0 outside of these intervals. Calculate its Fourier transform g(\omega).

  17. A function f(t) is defined to be equal to t^{-1/2} when t > 0 and to 0 when t \leq 0. Calculate its Fourier transform g(\omega).

  18. (Boas Chapter 13, Section 10, Problem 1.) Solve the two dimensional Laplace equation in the domain 0 \leq x \leq 1, 0 \leq y \leq 2, with the boundary conditions V(x=0,y) = 0, V(x=1,y) = 0, V(x,y=0) = 1 - x, V(x,y=2) = 0.

  19. (Boas Chapter 13, Section 10, Problem 14.) An infinitely long cylinder of radius 1 has been cut into quarter cylinders that are insulated from each other. Alternate quarter cylinders are held a potentials +100 and -100. Find the potential inside the cylinder.

  20. (Boas Chapter 13, Section 10, Problem 21.) The surface of a sphere of radius 1 is maintained at the potential V = \sin^2\theta + \cos^3\theta. What is the potential inside the sphere?

  21. A sphere of radius a is surrounded by another sphere of radius b; the spheres are concentric. On the surface of the smaller sphere (radius a) the potential is V = V_0 \cos\theta. On the surface of the larger sphere (radius b) the potential is V = V_1 \sin\theta \cos\phi. What is the potential between the spheres?

  22. (Boas Chapter 13, Section 10, Problem 9.) A string with fixed ends at x=0 and x=L is given an initial displacement f(x) = x(L-x) and an initial velocity g(x) = 0. Find the lateral displacement \psi(x,t) at any other time t.

  23. A string with fixed ends at x=0 and x=\pi is given an initial displacement f(x) = f_0 \sin x and an initial velocity g(x) = g_0 \sin x. Find the lateral displacement \psi(x,t).

  24. An infinitely long string is given an initial displacement f(x) = \sin(3 x) and an initial velocity g(x) = v \sin(3x). Find the lateral displacement \psi(t,x).

  25. A square membrane of side a = b = 1 is given an initial displacement f(x,y) = f_0 \sin^2(\pi x) \sin^2(\pi y) and an initial velocity g(x,y) = 0. Find the lateral displacement \psi(t,x,y).

  26. A circular membrane of radius 1 is given an initial displacement f(s,\phi) = s(1-s^2) \cos\phi and an initial velocity g(s,\phi) = 0. What is the lateral displacement \psi(t,r,\phi) at any other time t?

  27. (Boas Chapter 8, Section 13, Problem 48.) Solve the inhomogeneous differential equation d^2X/dt^2 + X = t \sin t for the function X(t). The initial conditions are that X = dX/dt = 0 at t=0.

13.2 Answers to Problems

  1. \begin{align} & \boldsymbol{\hat{u}} = (1-v)\, \boldsymbol{\hat{x}} + \sqrt{2v-v^2}\, \boldsymbol{\hat{y}}, \qquad \boldsymbol{\hat{v}} = - \sqrt{2v-v^2}\, \boldsymbol{\hat{x}} + (1-v)\, \boldsymbol{\hat{y}} \nonumber \\ & h_u = 1, \qquad h_v = \frac{u}{\sqrt{2v-v^2}}, \qquad d\boldsymbol{r} = du\, \boldsymbol{\hat{u}} + \frac{u\, dv}{\sqrt{2v-v^2}}\, \boldsymbol{\hat{v}} + dz\, \boldsymbol{\hat{z}} \nonumber \\ & \boldsymbol{\nabla} f = \frac{\partial f}{\partial u}\, \boldsymbol{\hat{u}} + \frac{\sqrt{2v-v^2}}{u}\, \frac{\partial f}{\partial u}\, \boldsymbol{\hat{v}} + \frac{\partial f}{\partial z}\, \boldsymbol{\hat{z}} \nonumber \\ & \boldsymbol{\nabla} \cdot \boldsymbol{A} = \frac{1}{u} \frac{\partial}{\partial u} \Bigl( u A_u \Bigr) + \frac{\sqrt{2v-v^2}}{u} \frac{\partial A_v}{\partial v} + \frac{\partial A_z}{\partial z} \nonumber \\ & \nabla^2 f = \frac{1}{u} \frac{\partial}{\partial u} \biggl( u \frac{\partial f}{\partial u} \biggr) + \frac{\sqrt{2v-v^2}}{u^2} \frac{\partial}{\partial v} \biggl( \sqrt{2v-v^2} \frac{\partial f}{\partial v} \biggr) + \frac{\partial^2 f}{\partial z^2} \nonumber \\ & \boldsymbol{\nabla} \cdot \boldsymbol{\hat{u}} = \frac{1}{u}, \qquad \boldsymbol{\nabla} \times \boldsymbol{\hat{v}} = \frac{1}{u}\, \boldsymbol{\hat{z}}, \qquad \nabla^2 \ln u = 0 \nonumber \end{align}

  2. \Gamma(55.5) = \frac{109!!}{2^{55}} \sqrt{\pi}

  3. Change the variable of integration.

  4. Follow the instructions.

  5. Involve the generating function and its derivative with respect to h.

  6. \delta(x) = \frac{1}{2} \sum_{\ell=0,2,4,\cdots}^\infty (2\ell+1) P_\ell(0)\, P_\ell(x)

  7. x^6 = \frac{1}{7} P_0 + \frac{10}{21} P_2 + \frac{24}{77} P_4 + \frac{16}{231} P_6

  8. Start from the differential equation satisfied by the associated Legendre functions, and proceed as for the proof of orthogonality for functions with different values of \ell.

  9. \frac{\delta(\theta-\theta') \delta(\phi-\phi')}{\sin\theta} = \sum_{\ell m} \bigl[ Y_\ell^m(\theta',\phi') \bigr]^* Y_\ell^m(\theta,\phi)

  10. \frac{1}{2^p p!}

  11. x^3 J_1(x) - 2x^2 J_2(x)

  12. Start from the integral representation, and consider a change of variable of integration.

  13. The equality is established by integrating both sides against a test function g(x). Break the domain of integration into a number of segments, each one beginning at a local minimum (or local maximum) of f and ending at the next local maximum (or local minimum); each segment necessarily contains a single zero x_j. Then change the variable of integration.

  14. f(x) = \frac{1}{\pi} \sin(k\pi) \sum_{n=-\infty}^\infty \frac{(-1)^n}{k-n} e^{inx}

  15. f(x) = \frac{1}{\pi} + \frac{1}{2} \sin x - \frac{2}{\pi} \sum_{n=2,4,6,\cdots}^\infty \frac{\cos(nx)}{n^2-1}

  16. g(\omega) = \frac{1-\cos(2\omega)}{i\pi \omega}

  17. g(\omega) = \left\{ \begin{array}{ll} \frac{i+i}{2\sqrt{2\pi}} \omega^{-1/2} & \quad \omega > 0 \\ \frac{i-i}{2\sqrt{2\pi}} |\omega|^{-1/2} & \quad \omega < 0 \end{array} \right.

  18. V(x,y) = \frac{2}{\pi} \sum_{n=1}^\infty \frac{1}{n \sinh(2n\pi)} \sin(n\pi x) \sinh\bigl[ n\pi(2-y) \bigr]

  19. V(s,\phi) = \frac{800}{\pi} \sum_{m=2,6,10,\cdots}^\infty \frac{1}{m} s^m \sin(m\phi)

  20. V(r,\theta) = \frac{2}{3} P_0(\cos\theta) + \frac{3}{5} r P_1(\cos\theta) - \frac{2}{3} r^2 P_2(\cos\theta) + \frac{2}{5} r^3 P_3(\cos\theta)

  21. V(r,\theta,\phi) = \frac{V_0}{1-a^3/b^3} \frac{a^2}{r^2} \biggl( 1 - \frac{r^3}{b^3} \biggr) \cos\theta + \frac{V_1}{1-a^3/b^3} \frac{r}{b} \biggl( 1 - \frac{a^3}{r^3} \biggr) \sin\theta \cos\phi

  22. \psi(t,x) = \frac{8L^2}{\pi^3} \sum_{n=1,3,5,\cdots}^\infty \frac{1}{n^3} \sin \Bigl( \frac{n\pi x}{L} \Bigr) \cos \Bigl( \frac{n\pi vt}{L} \Bigr)

  23. \psi(t,x) = f_0 \sin x \cos vt + \frac{g_0}{v} \sin x \sin vt

  24. \psi(t,x) = \frac{1}{2} \sin(3x - 3vt) + \frac{1}{2} \sin(3x + 3vt) + \frac{1}{6} \cos(3x - 3vt) - \frac{1}{6} \cos(3x + 3vt)

  25. \psi(t,x,y) = \frac{64 f_0}{\pi^2} \sum_{n=1,3,5,\cdots}^\infty \sum_{m=1,3,5,\cdots}^\infty \frac{1}{nm(n^2-4)(m^2-4)} \sin(n\pi x) \sin(m\pi y) \cos\Bigl( \pi \sqrt{n^2+m^2}\, v t \Bigr)

  26. \psi(t,s,\phi) = 4\cos\phi \sum_{p=1}^\infty \frac{J_3(\alpha_{1p})}{\alpha_{1p}^2 \bigl[ J_2(\alpha_{1p})\bigr]^2} J_1(\alpha_{1p} s) \cos( \alpha_{1p} vt )

  27. X(t) = \frac{1}{4} t \sin t - \frac{1}{4} t^2 \cos t