Problem 9-76 Geosynchronous orbit - Part 9
Most telecommunications satellites are in geosynchronous orbits above the earth, that is, they have periods of \(24 \;h.\) As a result, since the earth turns on its axis once in \(24\; h\) and each satellite goes around the earth once in \(24\; h,\) any individual satellite stays positioned above a particular point on the earth. (a) How far above the earth's surface must a geosynchronous satellite be? The earth's mass and average radius are \(5.98 \times 10^{24}\; kg\) and \(6368 \;km.\) (b) What is the satellite's speed?
Accumulated Solution
\(F = GmM/r^2 \\ F = mv^2/r \\ v^2 = GM/r \\ v = d/t = 2\pi r/T, \; \text{where T is the time to make one revolution}\)
\(v^2 = \frac{GM}{r} = \frac{4\pi ^2r^2}{T^2} \\ r^3 = \frac{GMT^2}{4 \pi^2}\)
Insert the values of \(G, M, T\) and solve for \(r^3\) and then \(r\) before continuing.