Problem 5-57 Translational Equil.- Part 6 - C
A sign outside a hair stylist's shop is suspended by two wires. The force of gravity on the sign has a magnitude of \(55.7\; N.\) If the angles between the wires and the horizontal are as shown in the figure, determine the magnitude of the tensions in the two wires.
[Ans. \(T_1 = 49.9\; N;\) \(T_2 = 40.8 \;N\)]
Accumulated Solution
\(a = 0 \\ \sum F_x = 0, \; \sum F_y = 0\)
\(x - \text{components}\) | \(y - \text{components}\) |
---|---|
\(T_{1x} = -T_1 \cos45 = -0.7071 \;T_1\) | \(T_{1y} = -T_1 \sin45 = 0.7071\; T_1\) |
\(T_{2x} = T_2 \cos30 = 0.8660 \;T_2\) | \(T_{2y} = T_2 \sin30 = 0.5000 \;T_2\) |
\(0\) | \(-55.7\) |
\(\text {Sum:} -0.7071 \;T_1 + 0.8660\; T_2 + 0 = 0\) | \(\text{Sum}: 0.7071\; T_1 + 0.5000\; T_2 - 55.7 = 0\) |
Correct!
The final two equations are:
\(-0.7071\; T_1 + 0.8660\; T_2= 0 \\ 0.7071 \;T_1 + 0.5000 \; T_2 - 55.7 = 0\)
The solution of these two equations is:
(A) \(T_1 = 49.9 \;N; \; T_2 = 40.8\; N\)
(B) \(T_1 = -49.9\; N; \; T_2 = -40.8 \; N\)
(C) \(T_1 = 40.8 \; N; \; T_2 = 49.9 \;N\)
(D) \(T_1 = -40.8 \;N; \; T2 = -49.9 \; N\)