Problem 4-57 Projectile - Part 9 - A
An astronaut strikes a golf ball on the Moon where the magnitude of the acceleration due to gravity is \(1.6\; m/s^2.\) The ball takes off with a velocity of \(32\; m/s\) at an angle \(35^\circ\) above the horizontal (the moon’s horizontal) and lands in a valley \(15\; m\) below the level where it started. Determine the golf ball's: (a) maximum height (b) time of flight (c) horizontal distance traveled.
[Ans. (a) \(1.1 \times 10^2\; m\) (b) \(24\; s\) (c) \(6.2 \times 10^2\; m\)]
Accumulated Solution
\(x\) | \(y\) |
---|---|
\(x = v_{0x{^t}} \\ d = 26.21\; t\) | \(y = -1.5 \;m \\ y = v_{0y{^t}} + ½\; a_yt^2\\ t^2 - 22.94t - 18.75 = 0\) |
Correct!
\(t^2 - 22.94t - 18.75 = 0\)
The solution of a quadratic equation \(ax^2 + bx + c = 0\) is:
(A) \(x = \frac{-b \pm \sqrt {b^2 -4ac}}{2a}\)
(B) \(x = \frac{b\pm \sqrt{b^2-4ac}}{2a}\)
(C) \(x = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}\)
(D) \(x = \frac{b \pm \sqrt{b^2+4ac}}{2a}\)