Practice Problem 2-10 - Part 3
A billiard ball travels \(0.46 \;m\) in the \(+x\) direction, having started at the origin \((x = 0)\), bounces off another ball to travel \(0.84\; m\) in the opposite direction, then bounces from the edge of the billiard table finally coming to rest \(0.12 \;m\) from that edge. The entire motion is one-dimensional and takes \(2.5 \;s\). Determine the billiard ball's (a) average speed, (b) final position, (c) average velocity.
Accumulated Solution
The \(\text{distance traveled} = 1.42\; m\)
The \(\text{average speed = distance/time =}\; 1.42\; m/2.5\; s = 0.57\; m/s\)
The final position is given by:
(A) \(0.46 \;m - 0.84\; m + 0.12 \;m = -0.26\; m\)
(B) \(0.46 \;m + 0.84 \;m + 0.12\; m = 1.42 \;m\)