Exponenets
- Given that \((1/x)2 = 0.04,\) find the value of \(x.\)
(A) 1/5
(B) 1/2
(C) 5
(D) 10Correct: C
\((1/5)^2 = 1/25 = 0.04\)
- Given that \(3^{x - 1} = 243,\) find the value of \(x.\)
(A) 4
(B) 5
(C) 6
(D) 82Correct: C
\(3^{(6 - 1)} = 3^5 = 243\)
- If \(x + 121,121 = 121,121,121,\) then \(x =\)
(A) \(1.21 \times 10^9\)
(B) \(1.21 \times 10^8\)
(C) \(1.21 \times 10^7\)
(D) \(1.21 \times 10^6\)Correct: B
\(121.000.000 + 121.121 = 121.121.121 \\ = 1.21 \times 10^8 + 121.121 \)
- Evaluate \(\frac{250 \times 10^{-6}}{10^3}\), writing your answer in standard form.
(A) \(2.5 \times 10^{-1}\)
(B) \(2.5 \times 10^{-7}\)
(C) \(2.5 \times 10^{-9}\)
(D) \(2.5 \times 10^{-11}\)Correct: B
\(2.50 \times 10^{-7}\)
- The value of \(4^3 \times 16^3\) is:
(A) \(64^6\)
(B) \(8^6\)
(C) \(4^8\)
(D) \(2^{13} \)Correct: B
\(4^3 \times 16^3 = \\ 4^3 \times (4^2)^3 = \\ 4^3 + 2 · 3 = \\ 4^3 + 6 = 4^9 \\ 4^9 = 8^6 \)
Thanks to Suparna Roy I can now supply the last part of the explanation:
\(4^9 = (2^2)^9 = 2^{18} = (2^3)^6 = 8^6\)
- Simplify : \([p^{-7}\div p^{-3} \times p^4 ]^2\)
(A) \(p^{-36}\)
(B) \(p^{-12}\)
(C) \(0\)
(D) \(1\)Correct: D
\([p^{-7}\div p^{-3} \times p^4 ]^2\quad\text{rewritten is} \\ = (p^{-7}/p^{-3} \times p^4)^2 \\ = (p^{-7} + 3 \times p^4)^2 \\ = (p^{-4} \times p^4) \\ = p^{-4} + 4 \\ = p^0 = 1\)
- Simplify: \(\bigg[ \frac{p^{-3}\times p^7}{p^{-10}\times p^3} \bigg]\)
(A) \(p^{-6}\)
(B) \(p^{11}\)
(C) \(p^{22}\)
(D) \(p^{121}\)Correct: C
\(\bigg[ \frac{p^{-3}\times p^7}{p^{-10}\times p^3} \bigg] \\ = (p^{-3} \times p^7)^2 - (p^{-10} \times p^3)^2 \\ = (p^4)^2 - (p^{-7})^2 \\ = p^8 - p^{-14} \\ = p^{8 + 14} = p^{22} \\\)
- \( (7m^2n^2) \cdot (4m^3n^2) = \)
(A) \(11\;m^5n^4\)
(B) \(28\; m^5n^4\)
(C) \(28\;m^6n^4\)
(D) \(28\;m^{23}n^{22}\)Correct: B
\((7\;m^2n^2) · (4\;m^3n^2) \\ = (4 \times 7)·(m^{2 + 3})·(n^{2 + 2}) \\ = 28\;m^5n^4\)
- \( (9ax^2) \cdot (8xy^2) =\)
(A) \(36\;axy^3\)
(B) \(72\;ax^2y^2\)
(C) \(72\;ax^3y^2\)
(D) \(98\;ax^2y^2\)Correct: C
\((9\;ax^2)·(8\;xy^2) \\ = (9 \times 8)·(ay^2x^{2 + 1}),br> = 72\;ax^3y^2\)
- \(\frac{(a^5)^{10}}{a^5}= \)
(A) \(a^{50}\)
(B) \(a^{45}\)
(C) \(a^{15}\)
(D) \(a^{10}\)Correct: B
\( a^{45} \)