PhD Thesis Presentation: Pairing in nuclear and cold atomic systems
Date and Time
Location
MacNaughton Room 415 and via Videoconference
Details
PhD Candidate
Georgios Palkanoglou
Abstract
Pairing correlations in nuclear systems have a long and rich history. They are an effect suggested more that a half-century ago and they are still related to a sizeable part of theoretical and experimental nuclear structure and dynamics investigations, while their relevance to the properties of neutron stars make nuclear superfluids an important concept in neutron star structure studies. In this thesis, we present various phenomenological investigation of nuclear superfluidity. We prescribe a modern way of solving the mean-field equations of pairing, holding the promise of out-performing standard approaches. On a different front, we complement novel microscopic descriptions of neutron pairing by extracting error estimations in systematic ways. Finally, we are probing novel nuclear superfluids, such as spin-triplet or mixed-spin pairs in nucleon-``emulating'' cold atoms and in nuclei. For the latter, we identify the behavior of various pairing condensates under realistic nuclear deformation, bringing results closer to experiment.
Examination Committee
- Dr. Eric Poisson, Chair
- Dr. Alexandros Gezerlis, Advisor
- Dr. Daniel Siegel, Advisory Committee
- Dr. Paul Garrett, Graduate Faculty
- Dr. Arnau Rios Huguet, External Examiner ( University of Barcelona)